TAVR in Asia: Current Challenges and Future Direction

Duk-Woo Park, MD, PhD

Professor of Medicine, University of Ulsan College of Medicine, Heart Institute, Asan Medical Center, Seoul, Korea

TAVR in Asian What is the Difference ?

Anatomical Concerns TAVR in Asian

Small aortic annulus
 Small vascular access
 Prevalence of Bicuspid Aortic Valve

Comparison of Aortic Annulus Asian vs Caucasian

	Asian	Caucasian	
	N=202	N=106	P value
Annulus Area, mm ²	406 ± 70	430 ± 77	0.007
Annulus Perimeter, mm	73 ± 6	75 ± 7	0.008
Mean Diameter, mm	23 ± 2	24 ± 2	0.009
RCA height, mm	17 ± 3	17 ± 4	0.82
LCA height, mm	12 ± 3	13 ± 3	< 0.001

Body height showed the highest correlation with annulus area. Co-existence of lower height of left coronary artery ostia (<12 mm) and small diameter of left coronary cusp (<30 mm) were more frequent in Asian group.

Yoon et al., AJC 2015; 116: 1566-73

The Asian TAVR Registry

Sponsored Investigator; Park Seung-Jung,MD Collaboration with CVRF, ClinicalTrials.gov: NCT02308150

Countries.	11 centers
ongKong	Queen Elizabeth Hospital
ingapore	National University Heart Centre
aiwan	National Taiwan University
	Cheng-Hsin Hospital
orea	Seoul National University Hospital
	Asan Medical Center
apan	Shonan Kamakura General Hospital
-	Keio University Hospital
	Teikyo University Hospital
	Saiseikai Yokohama Eastern Hospital
	Kokura Memorial Hospital

5

S

K

J

Baseline Characteristics (n=848)

	N=848
Age	81.8 ± 6.6
Female	53.3%
STS score	5.2 ± 3.8
BMI, kg/m²	23.0 ± 3.8
Diabetes mellitus	30.1%
NYHA class III/IV	63.0%
CAD	44.7%
Previous stroke	10.5%
Peripheral vascular disease	15.4%
COPD	11.7%
Sapien	549(65%)
CoreValve	299(35%)

Asian TAVR Registry, 2017

Procedural Outcomes

	N=848
Access site	
Transfemoral	86.2%
Transapical	12.6%
Transsubclavian, Tranaortic	0.4%, 0.8%
Procedural success	97.5%
Conversion to surgery	1.8%
Coronary obstruction	1.3%
Implantation of two valves	4.5%
New permanent pacemaker	9.5%
Paravalvular leakage (PVL) ≥ moderate to severe	9.8%

Asian TAVR Registry, 2017

Standard TAVR Defined by VARC

Standard Performance (VA) High-Risk AS patients ((Asian 2017	
All-cause mortality	< 3%	2.5%
Major (disabling) strokes	< 2%	2.2%
Major vascular complications	< 5%	5.0%
New permanent pacemakers	< 10%	9.5%
Mod-severe PVR	< 5%	9.8%

VARC* Vascular Academic Research Consortium

TAVR in KoreaWhat is the Difference ?

TAVR in Korea (2010~2017)

Active Devices in Korea

S3

Type of Valve

Baseline Characteristics (n=623)

	N=623
Age (Years)	78.6±6.3
Female	51.6 %
STS score	7.83 ± 8.86
DM	34.6 %
HTN	77.1 %
Stroke or TIA	15.3 %
PAOD	12.7 %
CKD on dialysis	6.4 %
Hospitalization period (Days)	12.1±7.5
TAVR to discharge (Days)	7.8±6.2

K-TAVI registry, 2018

Procedural Characteristics

	N=623
Approach	
Femoral	614 (97.8%)
Apical	11 (1.8%)
Subclavian	3 (0.5%)
Operation room	
Hybrid room	358 (57.0%)
Cath room	270 (43.0%)
Anesthesia duration (mins)	131.5±43.2
General anesthesia	533 (84.9%)
Conscious sedation	95 (15.1%)

Standard TAVR Defined by VARC

Standard Performance (VARC-2*) for High-Risk AS patients (@ 30 days)	Asian 2017	Korea 2017
All-cause mortality < 3%	2.5%	4.5%
Major (disabling) strokes < 2%	2.2%	1.4%
Major vascular complications < 5%	5.0%	? %
New permanent pacemakers < 10%	9.5%	5.3%
Mod-severe PVR < 5%	9.8%	5.4%

VARC* Vascular Academic Research Consortium

TAVR in AMC

TAVR in AMC (2010-2018.4, n=451)

TAVR in AMC

Device

SAPIEN
SAPIEN XT
SAPIEN 3
CoreValve
EVOLUT R
LOTUS

TAVR in AMC

	N = 421
Age, years	78.7 ± 5.2
Male sex	202 (48.0%)
BMI, kg/m ²	23.9 ± 3.4
Logistic Euroscore (%)	15.6 ± 12.2
STS risk score (%)	4.3 ± 4.4
DM	59 (14.0%)
Hypertension	358 (85.0%)
Atrial fibrillation	59 (14.0%)
Coronary artery disease	153 (36.3%)
Previous MI	22 (5.2%)
Previous stroke	42 (10.0%)
Peripheral vascular disease	22 (5.2%)
Chronic Kidney Disease	125 (29.7%)
COPD	64 (15.2%)
LV Ejection fraction, %	58.5 ± 10.9

TAVR in AMC Procedural Outcomes

	Overall (N = 403)
Device success	393 (97.5%)
Conversion to surgery	6 (1.5%)
Coronary obstruction	1 (0.2%)
Implantation of two valves	12 (3.0%)
New permanent pacemaker	34 (8.4%)
PVL ≥ moderate	25 (6.3%)
Major vascular complication	19 (4.7%)
Length of hospital stay (days)	8.6±13.5

Incidence of PPM

Standard TAVR *Defined by VARC*

Standard Performance (VARC-2*) for High-Risk AS patients (@ 30 days)		Asian 2017	AMC 2018	AMC "MAC"
All-cause mortality <	3%	2.5%	2.5%	0.5%
Major (disabling) strokes	< 2%	2.2%	3.2%	1.0%
Major vascular complications	< 5%	5.0%	4.7%	1.0%
New permanent pacemakers	< 10%	9.5%	8.4%	6.9%
Mod-severe PVR	< 5%	9.8%	6.3%	2.5%

VARC* Vascular Academic Research Consortium

What is the Difference ? TAVR in AMC

TAVR in AMC, 2018

 Good Collaborative "Heart Team",
 Simplification of the Procedure, *"Minimalist Approach"* Consistent, Meticulous CT Measurement, *"Own CT Algorithm for Device Selection"*

'Good Collaborative' Heart Team

Surgeon, Interventionist, Anesthesiologist, Echocardiologist, Technicians and Nurses.

"Minimalist Approach" TAVR in AMC

Conscious Sedation, No General Anesthesia Requires High Operator/Team Experience No TEE, but TTE No central venous catheter 30 min. Procedure Early assessment of neurologic status Early recovery, shorter length of stay, **Discharge on Day #3 Less Complications, Better Outcomes**

In 2018, TAVR is a Routine Practice

"Minimalist Approach" TAVR in AMC

"Minimalist Approach" Post TAVR Care in AMC

- Short stay (1 day) in ICU
- Optional temporary pacemaker
- Early mobilization
- Avoid polypharmacy
- Cardiac Rehabilitation Clinic

TAVR in AMC Procedural Outcomes

	Overall (N = 403)	General Anesthesia (N = 200)	MAC (N = 203)	P value
Device success	393 (97.5%)	193 (96.5%)	200 (98.5%)	0.16
Conversion to surgery	6 (1.5%)	5 (2.5%)	1 (0.5%)	0.10
Coronary obstruction	1 (0.2%)	1 (0.5%)	0	0.50
Implantation of two valves	12 (3.0%)	10 (5.0%)	2 (1.0%)	0.02
New permanent pacemaker	34 (8.4%)	20 (10.0%)	14 (6.9%)	0.26
PVL ≥ moderate	25 (6.3%)	20 (10.2%)	5 (2.5%)	0.002
Major vascular complication	19 (4.7%)	17 (8.5%)	2 (1.0%)	<0.001
Length of hospital stay (days)	8.6±13.5	9.7±8.8	7.4±16.8	<0.001

TAVR in AMC30 Days Outcomes

	Overall (N = 403)	General Anesthesia (N = 200)	MAC (N = 203)	P value
Death, all	10 (2.5%)	9 (4.5%)	1 (0.5%)	0.01
Cardiac death	6 (1.5%)	5 (2.5%)	1 (0.5%)	0.10
Non-cardiac death	4 (1.0%)	4 (2.0%)	0	0.043
Stroke, all	13 (3.2%)	11 (5.5%)	2 (1.0%)	0.01
Disabling	6 (1.5%)	4 (2.0%)	2 (1.0%)	0.40
Non-disabling	7 (1.7%)	7 (3.5%)	0	0.07
Death or disabling stroke	15 (3.7%)	12 (6.0%)	3 (1.5%)	0.015
Bleeding	130 (32.3%)	86 (43.0%)	44 (21.7%)	<0.001
Life-threatening	30 (7.4%)	21 (10.5%)	9 (4.4%)	0.02
Major	117 (29.0%)	79 (39.5%)	38 (18.7%)	<0.001

Standard TAVR *Defined by VARC*

Standard Performance (VARC-2*) for High-Risk AS patients (@ 30 days)		Asian 2017	AMC 2018	AMC "MAC"
All-cause mortality <	3%	2.5%	2.5%	0.5%
Major (disabling) strokes	< 2%	2.2%	3.2%	1.0%
Major vascular complications	< 5%	5.0%	4.7%	1.0%
New permanent pacemakers	< 10%	9.5%	8.4%	6.9%
Mod-severe PVR	< 5%	9.8%	6.3%	2.5%

VARC* Vascular Academic Research Consortium

TAVR in AMC

 Good Collaborative "Heart Team",
 Simplification of the Procedure, *"Minimalist Approach"* Consistent, Meticulous CT Measurement, *"Own CT Algorithm for Device Selection"*

Comprehensive Pre-TAVR CT Planning

Avoid Routine Pre-TAVR Angiogram, Aortogram/Peripheral/Coronary angiogram

Suitable Aortic Root Anatomy
 Device and Size Selection
 Iliac and Femoral Anatomy
 Coronary Disease Status

Aortic Annulus Measurement

Annulus plane

Aortic Annulus parameters	
Annulus short diameter	21.8 mm
Annulus long diameter	25.6 mm
Annululs mean diameter	23.7 mm
Annulus area	435 mm ²
Annulus area-driven diameter	23.5 mm
Annulus perimeter	74.5 mm
Annulus perimeter-driven diameter	23.7 mm

P2018

Sinus of Valsalva and STJ size

Sinus of Valsalva

Sinus of Valsalva		STJ	
Area	830 mm ²	Area	630 mm ²
Sinus / Annulus Area Ratio	1.91	STJ/ Annulus Area Ratio	1.45
NCC diameter	30.6 mm	Mean diameter	28.2 mm
LCC diameter	33.5 mm		
RCC diameter	31.0 mm		

Mean Sinus / Annulus Area Ratio 1.83 ± 0.27

7 Mean STJ / Annulus Area Ratio

LVOT size

LVOT

LVOT	
Area	417 mm ²
LVOT / Annulus Area Ratio	0.96
Short diameter	20.7 mm
Long diameter	26.4 mm
Mean LVOT / Annulus Area Ratio	0.95 ± 0.12

TCTAP2018

Degree of Calcium

Calcium volume	
NCC	84 mm ³
RCC	62 mm ³
LCC	48 mm ³
Total	194 mm ³

Coronary Height

Anomalous origin of RCA from LCC

Coronary Height	
LCA	10.5 mm
RCA	13.5 mm

COLLEGE METERINE

CT Aortography

Right coronary Non-coronary Left coronary

LAO 6 CAUD 6 RR-interval 30%

Ileofemoral Angiogram

AMC S3 Sizing Algorithm: Minimizing PVL and PPM Insertion Based on the CT Assessment

Severe AS with Tricuspid

<u>10~15% Area Oversizing</u>

Heavy Calcification (Ca volume > 400 mm3)

5% Lesser Oversizing

Sinus of Valsalva to Annulus Area ratio < 1.5 & Coronary Height <10mn

5% Lesser Oversizing (or Self-Expandable Valve)

Small LVOT with Severe LVOT Calcification

Consider Lesser Oversizing

Adjusting S3 Size by Balloon Volume

TAVR in Perspective Reduction in Complications

Standard Performance (VARC-2*) for	AMC
High-Risk AS patients (@ 30 days)	2017

- All-cause mortality < 3%
 1.0%
- Major (disabling) strokes < 2%
- Major vascular complications < 5%
- New permanent pacemakers
 Mod-severe PVR

< 2% 0% < 5% 1.0% < 10% 4.0% < 5% 4.0%

* VARC; The Vascular Academic Research Consortium

Summary – TAVR in Asia Current Challenges

- Because East Asian ethnics are among the most populous (more than 1.5 billion people), potential TAVR candidates may be huge.
- Contradict to exponential increase of TAVR in Western population, Asia has been relatively slow to adopt TAVR.
- Multifactorial reasons might be exist for this slow adoption:
 - Reimbursement challenges,
 - High cost of TAVI devices,
 - Lack of screening and treatment infrastructure,
 - Lack of a Heart Team and structured training programme,
 - The presence of potentially challenging anatomical features.

Summary – TAVR in Asia Future Directions

- Despite the various challenges, results of TAVI procedures performed in Asia have been good and comparable to those from high-volume Western countries.
- The volume of TAVI procedures is definitely growing in Asia. Asian registries are also growing, improving and maturing.
- Structured TAVI education programme, learning opportunities, well-constructed screening process, and improving reimbursement policy will rapidly stimulate and expand the TAVR procedures and indications in Many Asian countries.

Thank You !!

summitMD.com

